This study introduces a wild radish population collected from Yelbeni in the Western Australian grainbelt that evolved an early silique abscission (shedding) trait to persist despite long-term harvest weed seed control (HWSC) use.
This study investigated the effects of repeated HWSC on the evolution of R. raphanistrum flowering dates, using two methods: an adaptation of the SOMER model that included flowering genes (called SOMEF); and a mathematical calculation of the endpoints of flowering date evolution utilizing the relevant life-history equations
This study investigated replicating six generations of glasshouse-based flowering date selection in wild radish (Raphanus raphanistrum L.) using an adaptation of the population model SOMER (Spatial Orientated Modelling of Evolutionary Resistance).
The aim of this study was to determine if compounds involved in auxin biosynthesis, transport and signalling are able to synergise with 2,4-D and increase its ability to control 2,4-D-resistant R. raphanistrum populations.
Synthetic auxin herbicides, such as 2,4-dichlorophenoxyacetic acid (2,4-D), are widely used for selective control of broadleaf weeds in cereals and transgenic crops.