Herbicides have been the primary tool for controlling large populations of yield depleting weeds from agro-ecosystems, resulting in the evolution of widespread herbicide resistance. In response, nonherbicidal techniques have been developed which intercept weed seeds at harvest before they enter the soil seed bank.
Raphanus raphanistrum is a problematic weed, which has become increasingly difficult to control in Australian cropping regions. In 2010, a random survey was conducted across 14 million ha of the Western Australian grain belt to establish the frequency of herbicide resistance in R. raphanistrum and to monitor the change in resistance levels by comparing results with a previous survey in 2003.
Random surveys conducted in the Western Australian (WA) grain belt have shown that herbicide-resistant Lolium rigidum and Raphanus raphanistrum are a widespread problem across the cropping region.
Lolium rigidum populations in Australia and globally have demonstrated rapid and widespread evolution of resistance to acetyl coenzyme A carboxylase (ACCase)-inhibiting and acetolactate synthase (ALS)-inhibiting herbicides. Thirty-three resistant L. rigidum populations, randomly collected from crop fields in a most recent resistance survey, were analysed for non-target-site diclofop metabolism and all known target-site ACCase gene resistance-endowing mutations.
Glyphosate is the most important and widely used herbicide in world agriculture. Intensive glyphosate selection has resulted in the widespread evolution of glyphosate-resistant weed populations, threatening the sustainability of this valuable once-in-acentury agrochemical. Field-evolved glyphosate resistance due to known resistance mechanisms is generally low to modest.
Many herbicide-resistant weed species are polyploids, but far too little about the evolution of resistance mutations in polyploids is understood. Hexaploid wild oat (Avena fatua) is a global crop weed and many populations have evolved herbicide resistance.
Lolium rigidum is an obligately cross-pollinated, genetically diverse species and an economically important herbicide resistance-prone weed. Our previous work has demonstrated that recurrent selection of initially susceptible L. rigidum populations with low herbicide rates results in rapid herbicide resistance evolution.
Many herbicide-resistant weed species are polyploids, but far too little about the evolution of resistance mutations in polyploids is understood. Hexaploid wild oat (Avena fatua) is a global crop weed and many populations have evolved herbicide resistance.
Bromus rigidus is a common weed species that has increased in cropping fields owing to limited control options. During a random field survey inWestern Australia, sixB. rigiduspopulations that had survived in-crop weed control programmes were collected. The study aimed to determine the resistance profile of these six populations.
Hordeum populations are becoming increasingly difficult to control in cropping fields. Two herbicide-resistant H. leporinum populations were identified during a random crop survey after herbicides were applied. The study aimed to determine the herbicide resistance profile of these H. leporinum biotypes to a range of herbicides used for their control.
1 2