The widespread evolution of multiple herbicide resistance in the most serious annual weeds infesting Australian cropping fields has forced the development of alternative, non-chemical weed control strategies, especially new techniques at grain harvest.
With the ever-increasing evolution of resistance to post-emergent herbicides there is in several parts of the world an increase in pre-emergent herbicide use.
Weed populations can have high genetic plasticity and rapid responses to environmental selection pressures. For example, 100-fold amplification of the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene evolved in the weed species Amaranthus palmeri to confer resistance to glyphosate, the world’s most important herbicide.
Many herbicide-resistant weed species are polyploids, but far too little about the evolution of resistance mutations in polyploids is understood. Hexaploid wild oat (Avena fatua) is a global crop weed and many populations have evolved herbicide resistance.
The biochemical basis of resistance to the acetyl-coenzyme A carboxylase (ACCase)-inhibiting herbicide diclofop-methyl was investigated in a resistant wild oat population (R1), which does not exhibit a resistant ACCase.
In a large cropping area of northern Argentina, Sorghum halepense (Johnsongrass) has evolved towards glyphosate resistance. This study aimed to determine the molecular and biochemical basis conferring glyphosate resistance in this species. Experiments were conducted to assess target EPSPS gene sequences and 14C-glyphosate leaf absorption and translocation to meristematic tissues.
The interaction between environment and genetic traits under selection is the basis of evolution. In this study, we have investigated the genetic basis of herbicide resistance in a highly characterized initially herbicide-susceptible Lolium rigidum population recurrently selected with low (below recommended label) doses of the herbicide diclofop-methyl.
Lolium rigidum is an obligately cross-pollinated, genetically diverse species and an economically important herbicide resistance-prone weed. Our previous work has demonstrated that recurrent selection of initially susceptible L. rigidum populations with low herbicide rates results in rapid herbicide resistance evolution.
The auxinic herbicide 2,4-D amine is known, in vitro, as a cytochrome P450 inducer. The current study uses 2,4-D pre-treatment, at the whole plant level, to study mechanism(s) of non-target site based herbicide resistance to the ACCase-inhibiting herbicide diclofop-methyl in Lolium rigidum.
Plants can rapidly evolve resistance to herbicide in response to repeated selection. This study focuses on cross-resistance patterns observed in Lolium rigidum following pyroxasulfone recurrent selection.
1 2